
International Journal of Scientific & Engineering Research, Volume 7, Issue 3, March-2016 615
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

A Case Study On Teaching Agile Software
Development Methods

A. Spiteri Staines

Abstract— This paper presents and discusses some interesting findings from teaching Agile methods and modelling in a typical university
at an undergraduate level software engineering course. The students who took part in this study had been exposed to a few hour lectures
on Agile methods and other traditional methods like the RUP (rational unified process). A simple modelling questionnaire was presented to
the students. The results were recorded, analysed and interpreted. Findings are discussed and conclusions are given.

Index Terms— Agile Methods, Agile Modelling, Extreme Programming (XP), Best Practice Approaches, Requirements Elicitation,
Requirements Engineering, Software Engineering, Software Modelling, Software Quality Assurance, Teaching Software Engineering

——————————  ——————————

1 INTRODUCTION
HE past decades have seen the emergence of many new

methods used for software engineering. Teaching these
methods to students at undergraduate level is by no

means a simple feat. Years of hands on experience in the field
cannot be obtained from reading books. This is even more ev-
ident when light-weight approaches like Agile methods are
taken into account [1]-[3]. Agile methods have to be taught
after the students have a sound foundation in more traditional
methods and notations. Agile methods can be mainly pre-
sented to students at a surface level because indepth
knowledge would require several years of experience in the
field. This cannot be obtained from just a university course.
These methods are based on certain key principles and ideolo-
gies that have to be part of the organizational setting, where
they are being employed. Teaching and instructing students
on key principles of software engineering is very important
for their future development. Teaching these methods is not so
simple as the method itself. This is because acquaintance with
traditional and rigourous methods is a must before compre-
hension about these lightweight methods is possible.

 Software engineering is a vast subject that is dependent on
other areas like requirements engineering, requirements elici-
tation and other topics like formal methods. Those teaching
key principles in software engineering must strike a balance
between formal and informal techniques [1]-[7].

Rapid application development and Agile methods have
become commonplace in the modern world. Agile develop-
ment methods are also known as lightweight methods. These
development styles are focused to respond to changing envi-
ronments and getting software application development done
on time for particular business organizations. Agile methods
are particularly well suited to small to medium organizations
that focus on business and E-Commerce. Agile methods are
prescribed for business organizations where requirements are
frequently changing over a period of time. Evaluation of soft-

ware takes place rapidly because of time constraints. Systems
development takes place as a series of versions that are dis-
cussed with regular meetings with stakeholders [5]-[7].

Agile methods have been developed to deal with the issues
and problems related to more traditional approaches. The very
word Agile implies focusing on doing things or getting things
done rather than just focusing on design only. Agile develop-
ment is a continuous process of self improvement based on
iterations. The idea is to deliver high quality quick solutions at
a low cost. However, the success completely depends on the
organization. Agile methods come from a long lasting cultural
setup in the organization.

Teaching Agile methods to students is cumbersome: i)
Hands on exposure to notations and methods is missing. ii)
Some form of formal background and understanding the im-
portance of software development methods does not exist un-
less there is previous workplace experience. iii) Important ag-
ile principles cannot be transferred from a course. These can
only be understood in a work environment. Some important
Agile development principles like: i) priority to satisfy the cus-
tomers, ii) team collaboration, iii) good communication prin-
ciples that must exist in the organization, etc. are imperative
for the success of Agile.

Some consider that the Agile principles are anti-
methodology and require no diagrams or notations at all. This
is a mistaken idea, because Agile tries to create a balance in
this respect. Modelling is important, but models must not be
created just for the sake of creating them. Their use is for help-
ing the stakeholders comprehend the scenario.

This study deals with examining how students compre-
hend and view Agile modelling in a small teaching environ-
ment at undergraduate level.

2 METHODOLOGY
2.1 How the Study was Conducted
A small group of students in an undergraduate software engi-
neering course were selected for this study. The group consist-
ed of about 30 students. These were presented with a struc-
tured questionnaire after they had been exposed to Agile
methods like Scrum and XP (extreme programming). The stu-
dents were left free to answer or ignore the questionnaire.

T

————————————————
• Anthony (Tony) Spiteri Staines is an Associate Academic at the Depart-

ment of Computer Information Systems at the Faculty of ICT, University
of Malta, e-mail: toni_staines@yahoo.com

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 3, March-2016 616
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

Fig. 2. A graph showing summary for the average score for each of the
questions in the questionnaire. The highest possible score is 5 and the
lowest possible score is 0. It is obvious that Q5 has the highest average
score

Out of the 30 students 13 students responded to the question-
naire in full and handed in their results.

2.2 Questionnaire Used
The questionnaire used for this study consisted of eleven
questions. The questions were based on the following: i) Fa-
miliarity with Agile Modelling Concepts. ii) The source from
where the notations are derived. Thus it is possible to have
notations from other sources like the UML, RUDP, SSADM,
etc. iii) The confusing problems of having too many models,
iv) The assumption that XP (extreme programming) does not
require any models at all, v) The assumption that models can

improve software quality by communicating the needs to dif-
ferent stakeholders, vi) The idea that no single modelling ap-
proach can work for different problem domains, vii) Good
models should have strong visual expression, viii) Modelling
can be easily learned in the class room or from books, ix) The
models are not formal representations and hence can contain

incorrect views, x) The issue that models require successive
refinements, xi) The requirement for validation.

The results in the questionnaire are ranked accordingly to
the Likert scale: i) Strongly agree, ii) Agree , iii) Uncertain/not
applicabe , iv) disagree and v) strongly disagree with the pro-
posed statements,by placing a cross or ticking the appropriate
box. The basic structure of this questionnaire is depicted in fig.
1.

2.3 How the Results Were Obtained
When the students returned the questionnaire it was analysed
using very basic measures to understand the actual data ob-
tained. The method used to analyze the data was quite primi-
tive. The data was loaded into a spread sheet, where a simple
evaluative ranking scale was used. Stongly Agree 5, Agree 4,
Uncertain/Not Applicable 3, Disagree 2 and Strongly Disagree
1.

The scores for those who answered the questionnaire were
fed into the spreadsheet for each single question from 1 -11.
An average value was calculated for each question. The graph
in fig. 2 shows a summary of the results for each single
question.

2.4 How the Results Were Interpreted
This was based on the average score and the results placed in
a table. This was done because the data obtained is quite
straightforward to process. The data can be averaged and
summarized and results can be interpreted at a glance.

3 INTERPRETATION AND DISCUSSION OF THE RESULTS
AND FINDINGS

Q1 asks about the familiarity with Agile modelling concepts.
This question scored an average of 3.3/5 which implies that
the students think that they are quite confident and under-
stand the basic aspects of what Agile is. This might not be the
case as it is difficult to quantify familiarity and a short course
can just brief them about the idea of Agile. The exposure that

Fig. 1. A Sample of the Agile modelling questionnaire handed out
to the students. The scoring was simply done by ticking the box-
es to indicate the approximate value that the student identifies
with.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 3, March-2016 617
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

comes from a working environment and a number of years in
the field cannot be obtained from a study unit of a few
months.

Q2 asks if Agile modelling notations are taken from other
sources like UML, RUDP, SSADM. Again an average score of
3 is affirmative of this. It implies that the students consider
that the notations used in Agile modelling are not purely ob-
tained from Agile only. This is correct in the sense that Agile
methods do not place any restrictions on which notations are
to be used or not. Agile methods have to be supported by the
use of diagrams, but the use of diagrams or notations should
be focussed on what is essential to be represented. Even XP
(extreme programming) cannot do away with notations. Nota-
tions are essential for basic system representation. Obviously
Agile methods have to use diagrams from other notations like
the UML. But the amount of diagrams used has to be kept to a
minimum, because Agile is a lightweight process.

Q3 suggests that too much models create confusion. The
average score for this was 3.6/5 which is significant. This
means that the students are confident that too much models
create confusion. Light weight methods like Agile try to solve
this problem. It is true that having too many models do create
confusion. It becomes difficult to try to update and keep con-
sistency between many different models.

Q4 negatively asserts that XP (extreme programming) does
not require any models at all. This cross checks with Q2 and
Q3. The score of 2.23/5 which is relatively low implies that
students do not agree with this statement in general. It also
shows that the cross check with Q2 and Q3 implies that Q2
and Q3 were not blindly answered. Students in general do not
agree with the statement that XP extreme programming does
not require any models at all.

Q5 suggests that models do improve software quality by
communicating the needs to different stakeholders. This ques-
tion scored an average of 4.5/5 which is significant. This clear-
ly indicates that models are definitely necessary for Agile
methods. It also asserts that students are in agreement that
some models for the stakeholders are a must. Students defi-
nitely agree that modelling has its own importance and rele-
vance for systems analysis and design.

Q6 asks if students agree with the statement that ‘No single
modelling approach can work for different problem domains’.
Again the score for this question was 4.15/5 which is signifi-
cant. This implies that the majority of students agree in princi-
ple with this assertion. It is a fact that there is no single mod-
elling approach that is suitable for every scenario. This can be
seen in the vast modelling techniques that are found in Re-
quirements Engineering and Requirements Elicitation topics.
As a matter of fact, for certain systems specific models have to
be created. These cannot be used elsewhere because they are
specific to a certain problem. Models are limited representa-
tion of what happens in the real world. Domain specific mod-
els belong to a particular group. Sometimes modelling is more
of an art rather than a scientific approach. Throw away proto-
typing deals with capturing the important elements of a sys-
tem where there is a great deal of uncertainty. Throw away
prototyping is a form of modelling in a certain sense.

Q7 suggests that good models should have a strong visual
expression. The score for this question was 4.3/5. This is a sig-

nificant score indicating that the majority of students under-
stand that good models are important tools for expressing
requirements and communicating them properly with the sys-
tem stakeholders. There are various types of models, some are
based on mathematical notations, set theory, algebras, specifi-
cation languages, etc. These models are not necessary visual
ones but they still have their importance. However in litera-
ture it is sometimes noted that these structures are not so sim-
ple to comprehend by different classes of stakeholders espe-
cially those who are not familiar with these notations. On the
other hand, many modelling notations like those found in the
UML have a strong visual component. This means that they
are suitable for expressing requirements with different stake-
holders. The UML models can also be formalised using speci-
fication languages and things like the OCL (object constraint
language) which is part of the UML itself. Hence this question
confirms that good models should have a strong visual com-
ponent. This is evident in many successful notations like those
found in FMCs (Fundamental modelling concepts), TAM
(Technical Architectural modelling), UML, etc.

Q8 suggests that good modelling can be easily learned in
the class room or from books. The average score for this ques-
tion was 3/5 which is not so significant. This implies that stu-
dents have different ideas from where modelling can be
learned. Some students think that modelling can be learned
from the class room whilst some others do not agree with this.
In reality modelling basic principles can be learned from a
class room environment. However this is not the case with in
depth modelling principles. These can only be learned from a
proper work environment and learning these principles can
only happen after years of hands on experience. This is also
seen from Agile methods and Agile modelling where the con-
tributors to these methods are persons who have worked in
the software industry for several years and they can contribute
to creating these techniques and modifying them.

Q9 suggests that Agile models are not formal representa-
tions and hence can contain incorrect views. The average score
for this question of 3.15/5 is insignificant. This means that the
students in principle agree with this statement to a certain
extent. This type of score is to be expected and makes sense.
This is because this question is quite tricky and the assertion
that agile models are not formal representations and can con-
tain incorrect views is partially correct. Agile models are not
formal representations and this is obviously true. However for
the business application domain Agile models are normally
sufficient to represent the requirements of a system. This im-
plies that even if these models do in fact contain incorrect
views nevertheless they are sufficient for business systems
that change rapidly in small organizational scenarios. The so-
lution to the problem of inaccurate representation is given in
Q10. The solution is itself a principle of Agile where models
undergo transformational refinements. This is a key principle
of lightweight methods where models are refined as necessary
in successive iterations.

Q10 suggests that Agile models require successive refine-
ments. The average score for this question of 3.9/5 indicates
that if most of the students are considered, slightly less than
80% agree with the idea of successive iterations for model re-
finements. This is an important principle for Agile. Agile is an

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 3, March-2016 618
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

on going process based approach. This signifies that im-
provements must be done iteratively.

Q11 suggests that Agile models must be validated. The av-
erage score for this was quite high at 3.8/5. It is obvious that
some form of validation must exist for agile models. The type
of validation applicable does not imply that it is complex vali-
dation, it could just be some simple form of visual checking or
correcting. All models in software engineering require some
form of validation whether it is formal or informal. The idea is
that when the model is drawn up it has to be checked to see if
important parts were omitted and that it makes sense. In reali-
ty the model should be verified by a different entity from the
one that created the model. In Agile models are also important
to test the newly developed applications. This implies that the
models must be correct and proper for this important task to
be carried out.

4 FINAL OBSERVATIONS AND CONCLUSIONS
Here some observations from the case study are presented and
discussed. These indicate some core key principles that are an
integral part of the so called lightweight methods. Lightweight
methods must have some form of planning and structure albe-
it this can be limited.

The results in the previous sections have been simply inter-
preted on the average score and experience. The following key
observations can be stated and explained.

4.1 Agile methods are based on key principles that are
not easily measured and comprehended

Agile is based on ideas of continuous attention to technical
quality and detail. This implies that good design will enhance
the principle of agility. This is a reason why models require
successive enhancements and validation as suggested in Q10
and Q11. Some students assume that Agile is in principle simi-
lar to RAD methods. But although Agile might in part resem-
ble RAD efforts for delivery there are intrinsic differences.
 Agile is intrinsically different because it is based on quality
of design and technical correctness. In Agile simplicity is the
key to success. This is the embodiment of light weight meth-
ods, where the essence is to simplify and have a clear strong
intent and focus on what needs to be done. Simplicity and
quality are key principles that are not easily measurable in real
terms but they are at the core of Agile method success.

4.2 Understanding the requirements and not just
documenting them is an important factor

Diagrammatic notations should serve for comprehension of
requirements and not just for documenting the system. This is
a very important principle that ties in with Q5 to Q8. The dia-
grams that are used should serve their purpose properly. The
models need to be concise and to the point without excessive
detail. Thus a balance needs to be established to get the correct
amount of documentation used, which must on one hand not
be excessive and on the other hand not too little thus omitting
key aspects.

4.3 Attention to excellence in terms of artifacts and
design are essential

Agile concepts are heavily dependent on excellence and quali-
ty. Agile is a process of self-improvement and learning to do
things in the best possible way. This is what excellence means.
Excellence implies that the artifacts produced are of the best
possible standard. This can only be achieved after years of
hands on experience in the field and perfecting the methods of
work that are being used. Q10 and Q11 deal with these issues
when they state that agile models must undergo successive
refinements and that they do require validation. Without
proper validation it is impossible to get quality principles. Q9
asserts that agile models are not formal representations hence
these may contain incorrect views. This again confirms that it
is necessary to have refinements and quality mechanisms in
place.

4.4 Agile methods are based on principles of
continuous improvement

Agile methods are based on improving the process and the
product continuously. This implies that an ongoing organiza-
tional mindset is to instill a culture of excellence where con-
tinous improvement is the order of the day [7]. Such an ap-
proach is not the result of implementing some policy, but it
can only be obtained from a companywide approach that has
integrated this attitude from a number of years. This idea has
not been directly included in the questionnaire, but it is obvi-
ous that for having refinements as in Q10 and validation in
Q11 the ideal way how to go about this is to have structures
that guarantee continuous improvement as part of the organi-
zation culture.

REFERENCES

[1] A. Moran, Agile Risk Management and Scrum, IARM, 2014.

http://institute.agileriskmanagement.org/publications/
[2] Managing Agile: Strategy, Implementation, Organisation and People

(Springer Verlag, 2015)
[3] A. Moran, Agile Risk Management, SpringerBriefs in Computer Sci-

ence, Springer-Verlag, 2014.
[4] M. Kunz, R. R. Dumke ; N. Zenker, “ Software Metrics for Agile De-

velopment”, 19th Australian Conference on Software Engineering,
ASWEC 2008, IEEE, Perth Wa, Mar 2008, pp. 673-678.

[5] F. Maurer, G. Melnik, “Agile Methods: Crossing the Chasm”, Pro-
ceeding of the 29th International Conference on Software Engineer-
ing (ICSE), IEEE, Minneapolis USA, May 2007, pp. 176-177.

[6] D. Cohen, M. Lindvall, P. Costa, “An Introduction to Agile Meth-
ods”, Advances in Computers, Vol. 62, Elsevier, 2004, pp. 1-66.

[7] J. Favaro, “Value-Based Management and Agile Methods”, Proc. 4th
 International Conference on Extreme Programming and Agile Pro-
cesses, Genoa, May 2003.

IJSER

http://www.ijser.org/
http://institute.agileriskmanagement.org/publications/

	1 Introduction
	2 Methodology
	2.1 How the Study was Conducted
	2.2 Questionnaire Used
	2.3 How the Results Were Obtained
	2.4 How the Results Were Interpreted

	3 Interpretation and Discussion of the results and Findings
	4 Final Observations and Conclusions
	4.1 Agile methods are based on key principles that are not easily measured and comprehended
	4.2 Understanding the requirements and not just documenting them is an important factor
	4.3 Attention to excellence in terms of artifacts and design are essential
	4.4 Agile methods are based on principles of continuous improvement

	References

